1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
//! This is a module containing all important data structs for storing the data of a chunk section
use std::{
collections::HashMap,
fmt::{Debug, Write},
};
use nbt_lib::{
traits::{AsNbtValue, FromNbtValue},
NbtValue,
};
use crate::anvil::region::chunk::chunk_data::list_to_nbt_value_list;
use nbt_lib::{create_compound_map, unwrap_to_empty};
/// A struct with block data
#[derive(PartialEq, Debug)]
pub struct BlockData {
/// The name of the block
pub name: String,
/// The properties of the block
pub properties: Option<NbtValue>,
}
impl FromNbtValue for BlockData {
fn from_nbt_value(value: NbtValue) -> Result<Self, ()>
where
Self: Sized,
{
let (_, data) = unwrap_to_empty!(Some(value), compound);
let name = unwrap_to_empty!(data.get("Name"), string);
let properties = if data.contains_key("Properties") {
Some(data.get("Properties").ok_or(())?.clone())
} else {
None
};
Ok(Self { name, properties })
}
}
impl AsNbtValue for BlockData {
fn as_nbt_value(&self) -> Result<NbtValue, ()> {
use nbt_lib::NbtValue::*;
let mut compound_map = create_compound_map!(
Name: String(self.name.clone())
);
if let Some(properties) = self.properties.as_ref() {
compound_map.insert("Properties".to_string(), properties.to_owned());
}
Ok(Compound(None, compound_map))
}
}
/// A structure containing important data of a section of a `Chunk`
/// it stores a section of 16*16*16 (4096) blocks
///
/// # Source
/// - [fandom.minecraft.com](https://minecraft.fandom.com/wiki/Chunk_format#NBT_structure)
///
/// # Info
///
/// Everything, taged as "Not confirmed for 1.18 format" is not implemented, but will be if it
/// turnes out to be neccessarry
#[derive(PartialEq)]
pub struct ChunkSection {
/// The y position of the sector
pub y: i8,
/// A list of all used blocks in a chunk
pub block_palette: Vec<BlockData>,
/// A list of all placed blocks, the list contains the offset into the `block_palette` list to
/// save some memmory, this field is optional, if `None` and `block_palette.len() == 1` then
/// the whole sections is filled with that one block.
///
/// # Example
///
/// full chunk of Air:
/// the `block_palette` contains the data for air. the `block_data` is `None` to indicate that
/// the same data is used accross the whole section
///
/// # Info
///
/// The stored indices are always as small as possible, but at least 4 bits with no packing
/// accross multiple elements of the array. Meaning if the chunk consists of 33 different
/// blocks, we need 5 bits to represent all unique blocks, now we can divide 64 by the amount
/// of needed bits and floor the result to know how much block entries we can store per
/// element(u64). For example $⌊64/5⌋ = 12$ so if we need 5 bits to represent each unique block
/// we can store 12 per element.
///
/// # Note
///
/// The explanation above only applies to the nbt representation. The used on in the code has
/// an entry for each element to keep the amount of computation low in a trade of with a bit
/// more used memory
pub block_data: Option<[i64; 4096]>,
/// A list of all used biomes in the chunk
pub biome_palette: Vec<String>,
/// An optional list of the biomes used on each (x | z) position. If the value is `None` every
/// location in the section has the same biome
pub biome_data: Option<[i64; 64]>,
/// The light emitter data of each block in the chunk
///
/// # Note
///
/// In the Nbt data this will be stored as a [u8; 2048] where each element will contain two
/// block each 4-bits of light data.
pub block_light: Option<[i8; 4096]>,
/// The sky light data of each block in the chunk
///
/// # Note
///
/// In the Nbt data this will be stored as a [u8; 2048] where each element will contain two
/// block each 4-bits of light data.
pub sky_light: Option<[i8; 4096]>,
}
impl Debug for ChunkSection {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
f.write_str("ChunkSection {\n")?;
f.write_fmt(format_args!("\ty: {},", self.y,))?;
f.write_fmt(format_args!("\n\tblock_palette: {:?},", self.block_palette))?;
if let Some(block_data) = self.block_data {
f.write_fmt(format_args!("\n\tblock_data: {:?},", block_data))?;
};
f.write_str("\n\tbiome_palette: {")?;
for (i, biome) in self.biome_palette.iter().enumerate() {
f.write_str("\n\t\t")?;
f.write_str(biome)?;
if i == self.biome_palette.len() - 1 {
f.write_str(",")?;
}
}
if let Some(biome_data) = self.biome_data {
f.write_fmt(format_args!("\n\tbiome_data: {:?},", biome_data))?;
};
if let Some(block_light) = self.block_light {
f.write_fmt(format_args!("\n\tbiome_data: {:?},", block_light))?;
};
if let Some(biome_datasky_light) = self.sky_light {
f.write_fmt(format_args!("\n\tbiome_data: {:?},", biome_datasky_light))?;
};
f.write_str("\n\t}")?;
f.write_str("\n}")
}
}
impl ChunkSection {
const Y: &'static str = "Y";
const BLOCK_STATES: &'static str = "block_states";
const BIOMES: &'static str = "biomes";
const BLOCK_LIGHT: &'static str = "BlockLight";
const SKY_LIGHT: &'static str = "SkyLight";
/// creates a new `ChunkSection` that is filled with a specified block
pub fn new_filled(y: i8, filler: &str, sees_sky: bool) -> Self {
let block_palette = vec![BlockData {
name: filler.to_owned(),
properties: None,
}];
// This si currently unused, but this could be changed
/*
let sky_light = Some(if !sees_sky {
[0; 4096]
} else {
[15; 4096]
});
*/
Self {
y,
block_palette,
block_data: None,
biome_palette: vec!["minecraft:plains".to_string()],
biome_data: None,
block_light: None,
sky_light: None,
}
}
/// creates a new chunk section, with a given heightmap
pub fn new_with_height_map(
y: i8,
filler: &str,
sees_sky: bool,
heightmap: [[i16; 16]; 16],
) -> Self {
let block_palette = vec![
BlockData {
name: "minecraft:air".to_owned(),
properties: None,
},
BlockData {
name: filler.to_owned(),
properties: None,
},
];
let heightmap_offset = y * 16;
// This will probably be used in a later version
/*
let sky_light = Some(if !sees_sky {
[0; 4096]
} else {
let mut data = [0; 4096];
data.iter_mut()
.enumerate()
.filter(|(i, _)| {
let (x, z, y) = (
*i & 15,
(*i >> 4) & 15,
*i as i64 / (16 * 16) + heightmap_offset as i64,
);
heightmap[z][x] as i64 <= y
})
.for_each(|(_, v)| *v = 15);
data
});
*/
let block_data = {
let mut data = [1; 4096];
data.iter_mut()
.enumerate()
.filter(|(i, _)| {
let (x, z, y) = (
*i & 15,
(*i >> 4) & 15,
*i as i64 / (16 * 16) + heightmap_offset as i64,
);
(heightmap[z][x] as i64) < y
})
.for_each(|(_, v)| *v = 0);
Some(data)
};
Self {
y,
block_palette,
block_data,
biome_palette: vec!["minecraft:plains".to_string()],
biome_data: None,
block_light: None,
sky_light: None,
}
}
}
impl FromNbtValue for ChunkSection {
fn from_nbt_value(value: NbtValue) -> Result<Self, ()>
where
Self: Sized,
{
use nbt_lib::NbtValue::*;
if let Compound(_, data) = value {
let (biome_data, biome_palette) =
get_biome(unwrap_to_empty!(data.get(Self::BIOMES), compound).1)?;
let (block_data, block_palette) =
get_block_states(unwrap_to_empty!(data.get(Self::BLOCK_STATES), compound).1)?;
let block_light = if data.contains_key(Self::BLOCK_LIGHT) {
Some({
unwrap_to_empty!(data.get(Self::BLOCK_LIGHT), i8_array)
.into_iter()
.map(|v| [v >> 4, v & 0xF])
.flatten()
.collect::<Vec<i8>>()
.try_into()
.unwrap()
})
} else {
None
};
let sky_light = if data.contains_key(Self::SKY_LIGHT) {
Some(
unwrap_to_empty!(data.get(Self::SKY_LIGHT), i8_array)
.into_iter()
.map(|v| [v >> 4, v & 0xF])
.flatten()
.collect::<Vec<i8>>()
.try_into()
.unwrap()
)
} else {
None
};
let y = unwrap_to_empty!(data.get(Self::Y), i8);
return Ok(Self {
biome_data,
biome_palette,
block_palette,
block_data,
y,
block_light,
sky_light,
});
}
Err(())
}
}
struct BiomePalette(String);
impl FromNbtValue for BiomePalette {
fn from_nbt_value(value: NbtValue) -> Result<Self, ()>
where
Self: Sized,
{
Ok(Self(unwrap_to_empty!(Some(value), string)))
}
}
fn get_biome(values: HashMap<String, NbtValue>) -> Result<(Option<[i64; 64]>, Vec<String>), ()> {
let biomes: Vec<NbtValue> = unwrap_to_empty!(values.get("palette"), list);
let biomes: Result<Vec<String>, ()> = biomes
.into_iter()
.map(|value| value.as_string().map_err(|_| ()))
.collect();
let biomes = biomes?;
let biome_bit_size = (biomes.len().next_power_of_two() - 1).count_ones();
const BLOCK_SIZE: u32 = 64;
let biomes_data = if values.contains_key("data") {
Some({
let data: Vec<u64> = unwrap_to_empty!(values.get("data"), i64_array)
.into_iter()
.map(|d| d as u64)
.collect();
let mut result = Vec::new();
for i in 0..BLOCK_SIZE {
let index = i * biome_bit_size / 64;
let offset = i * biome_bit_size & 63;
let value = if offset + biome_bit_size <= 64 {
(data[index as usize] << offset) >> (64 - biome_bit_size)
} else {
// this gets the first part of the data an removes all data before the offset
// by shifting to the left by the offset, the it retrieves the data by shifting
// to the right by the offset, because there is no data after it, that has to
// be copped off
let value = (data[index as usize] << offset) >> offset;
let missing_bits = (offset + biome_bit_size) & 63;
let value = value << missing_bits;
let value = value | (data[(index + 1) as usize] >> (64 - missing_bits));
assert!((value as i64) >= 0);
value
};
result.push(value);
}
result
.into_iter()
.map(|d| d as i64)
.collect::<Vec<i64>>()
.try_into()
.unwrap()
})
} else {
None
};
Ok((biomes_data, biomes))
}
fn get_block_states(
values: HashMap<String, NbtValue>,
) -> Result<(Option<[i64; 4096]>, Vec<BlockData>), ()> {
let palette: Option<&NbtValue> = values.get("palette");
let palette: Vec<NbtValue> = unwrap_to_empty!(palette, list);
let palette: Vec<BlockData> = palette
.into_iter()
.map(|value| BlockData::from_nbt_value(value))
.collect::<Result<_, _>>()?;
let block_bit_size = (palette.len().next_power_of_two() - 1).count_ones();
const BLOCK_SIZE: u32 = 4096;
let block_data = if values.contains_key("data") {
Some({
let data: Vec<u64> = unwrap_to_empty!(values.get("data"), i64_array)
.into_iter()
.map(|d| d as u64)
.collect();
let mut result = Vec::new();
for i in 0..BLOCK_SIZE {
let index = i * block_bit_size / 64;
let offset = i * block_bit_size & 63;
let value = if offset + block_bit_size <= 64 {
(data[index as usize] << offset) >> (64 - block_bit_size)
} else {
// this gets the first part of the data an removes all data before the offset
// by shifting to the left by the offset, the it retrieves the data by shifting
// to the right by the offset, because there is no data after it, that has to
// be copped off
let value = (data[index as usize] << offset) >> offset;
let missing_bits = (offset + block_bit_size) & 63;
let value = value << missing_bits;
let value = value | (data[(index + 1) as usize] >> (64 - missing_bits));
assert!((value as i64) >= 0);
value
};
result.push(value);
}
result
.into_iter()
.map(|d| d as i64)
.collect::<Vec<i64>>()
.try_into()
.unwrap()
})
} else {
None
};
Ok((block_data, palette))
}
impl AsNbtValue for ChunkSection {
fn as_nbt_value(&self) -> Result<NbtValue, ()> {
use nbt_lib::NbtValue::*;
let mut compound_map = create_compound_map!(
Y: Byte(self.y),
block_states: Compound(None, create_compound_map!(
palette: list_to_nbt_value_list(&self.block_palette)?,
data: LongArray(self.block_data.map(|e|e.to_vec()).unwrap_or(Vec::new()))
)),
biomes: Compound(None, create_compound_map!(
palette: List(self.biome_palette.iter().map(|s| nbt_lib::NbtValue::String(s.to_owned())).collect()),
data: LongArray(self.biome_data.map(|e|e.to_vec()).unwrap_or(Vec::new()))
))
);
if let Some(block_light) = self.block_light {
compound_map.insert(
"BlockLight".to_string(),
ByteArray(
block_light
.chunks_exact(2)
.map(|e| (e[0].min(0xF) << 4) | e[1].min(0xF))
.collect(),
),
);
}
if let Some(sky_light) = self.sky_light {
compound_map.insert(
"SkyLight".to_string(),
ByteArray(
sky_light
.chunks_exact(2)
.map(|e| (e[0].min(0xF) << 4) | e[1].min(0xF))
.collect(),
),
);
}
Ok(Compound(None, compound_map))
}
}